MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* =  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]








           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]






           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]




           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []]

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


Na mecânica quântica, uma função de estado é uma combinação linear (uma superposição) de valor próprio. Numa Representação de Schrödinger, o estado de um sistema evolui com o tempo, onde a evolução para um sistema quântico fechado é provocada por operador unitário chamado de operador da evolução temporal. Isto difere de uma Representação de Heisenberg onde os estados são constantes enquanto os observáveis evoluem com o tempo. As estatísticas de medição são as mesmas em ambas as representações.

O operador de evolução temporal

Definição

O operador de evolução temporal U(t,t0) é definido como:

Isto é, quando este operador está agindo no estado "ket" em t0 no dá o estado "ket" em um tempo t. Para "bras", nós temos:






Na física a Representação de Heisenberg, desenvolvida pelo físico Werner Heisenberg, é a formulação da mecânica quântica onde os operadores (observáveis) são dependentes do tempo e o estado quântico são independentes do tempo. Isto demonstra o contraste com a Representação de Schrödinger na qual os operadores são constantes e o estado quântico se desenvolve no tempo. Estas duas representações apenas se diferem pela mudança na dependência do tempo. Formalmente falando a Representação de Heisenberg é a formulação da mecânica matricial numa base arbitrária, onde o Hamiltoniano não é necessariamente diagonal.

Detalhes matemáticos

Na Representação de Heisenberg da mecânica quântica o estado quântico, não se modifica com o tempo, e um observador A satisfaz a equação

onde H é o hamiltoniano e [·,·] é o comutador de A e H. Em certo sentido, a Representação de Heisenberg é mais natural e fundamental que a Representação de Schrödinger, especialmente para a teoria da relatividade geral e restrita.

A similaridade da Representação de Heisenberg com a física clássica é facilmente identificada ao trocar o comutador da equação acima pelos Parênteses de Poisson, então a equação de Heisenberg se tornará uma equação da mecânica hamiltoniana.



Na mecânica quântica, a Representação de Dirac ou Representação de Interação é uma intermediação entre a Representação de Schrödinger e a Representação de Heisenberg. Considerando que nas outras duas representações ou o vetor do estado quântico ou o operador possuem dependência com o tempo, na Representação de Dirac ambas possuem parte da dependência do tempo dos observáveis.

Equações que incluem operadores agindo em tempos distintos, que são comportadas na Representação de Dirac, não necessariamente serão comportados nas representações de Schrödinger e Heisenberg. Isto é porque transformações unitárias do tempo se relaciona com operadores de uma representação com o operador análogo da outra representação.

Definição

Operadores e vetores dos estados quânticos na Representação de Dirac são relacionados pela mudança de base para aqueles operadores e vetores na Representação de Schrödinger.[1]

Para alternar na Representação de Dirac, nós dividimos o hamiltoniano da Representação de Schrödinger em duas partes, . Qualquer escolha das partes nos dará uma Representação de Dirac válida, mas para nos ser útil na simplificação do problema, as partes serão escolhidas de forma que  será facilmente resolvido e  conterá as partes mais difíceis de analisar deste sistema.

Se o hamiltoniano for dependente do tempo (por exemplo, se o sistema quântico interagir com um campo elétrico aplicado externo que varia com o tempo), normalmente nos será vantajoso incluir explicitamente os termos dependentes do tempo com , deixando o  independente do tempo. Nós iremos assumir que este será o caso. (se existir um contexto em que isto faça sentido ter um  dependente do tempo, então deve-se trocar  pelo operador de evolução).

Vetor do estado quântico

O vetor do estado quântico na Representação de Dirac é definido como[2]

Onde  é o mesmo vetor da Representação de Schrödinger.






Comments